Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Zhen Xu

College of Chemistry and Life Science, Tianjin Normal University, Weijin Road No. 241,
Tianjin, People's Republic of China

Correspondence e-mail:
youquan_zhu@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.061$
$w R$ factor $=0.207$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

1-tert-Butyl-3-(a-hydroxy-4-isopropylbenzyl-idene)pyrrolidine-2,4-dione

The title compound, $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$, is a potent new herbicide containing the pyrrolidine-2,4-dione ring system. In the crystalline state, the molecular skeleton contains a hydrogen-bonded enol group, formed by benzoyl tautomerization.

Comment

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity, such as tenuazonic (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Rinehart et al., 1971), malonomycin (Bann et al., 1978), α-cyclopiazonic acid (Stickings, 1959; van Rooyen, 1992) and β-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and the hydrogen chemical shift of the enol hydroxy group is about 11 p.p.m. (Wu et al., 2002). More importantly, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu et al., 2004). In this paper, we report the crystal structure of the title compound, (1b).

The molecular structure of (1b) is shown in Fig. 1. The analysis of crystals grown from a solution of 3-(4-isopropyl-benzoyl)-1-tert-butylpyrrolidine-2,4-dione, (1a), showed that we had obtained crystals of the related tautomeric form, viz. 1-tert-butyl-3-(ahydroxybenzylidene)pyrrolidine-2,4-dione, $1(1 b)$. Atom H 1 , involved in intramolecular hydrogen bonding between O 1 and O 2 , was assigned to O 1 rather than to O 2 , based on bond lengths. The $\mathrm{C} 4-\mathrm{O} 2$ distance is

A view of the title compound, with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Received 23 December 2004
Accepted 6 January 2005
Online 15 January 2005

A partial packing diagram of the title compound
1.262 (4) \AA. The bond between atoms C 2 and O 3 is a double bond $(\mathrm{C} 2=\mathrm{O} 3)$ of $1.221(4) \AA$. In contrast, the $\mathrm{C} 9-\mathrm{O} 1$ distance $[1.311$ (4) \AA A is intermediate between the normal carbonyl $\mathrm{C}=\mathrm{O}$ bond and the $\mathrm{C}-\mathrm{O}$ single-bond length (Allen et al., 1987). A similar situation has been reported for the related compounds 3-(1-hydroxyethylidene)-1-phenylpyrrol-idine-2,4-dione (Ellis \& Spek, 2001), 1-benzyl-3-(α-hydroxy-benzylidene)pyrrolidine-2,4-dione (Zhu, Song, Li et al., 2004) and 3-(α-hydroxy-2-methoxylbenzylidene)-1-isopropylpyrrol-idine-2,4-dione (Zhu, Song, Yao et al., 2004), which contain the same pyrrolidine skeleton. In addition, the X-ray data indicate no hydrogen-bonding interaction between adjacent molecules (Fig. 2), while the compounds mentioned above involve weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

The title compound, (1b), was prepared according to the reported method (Matsuo et al., 1980) and was crystallized from a mixture of petroleum ether and ethyl acetate (v / v 3:1).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$
$M_{r}=301.37$
Monoclinic, $P 2_{\mathrm{a}} / n$
$a=14.896$ (3) \AA
$b=5.9680(11) \AA$
$c=18.894$ (4) \AA
$\beta=95.752(4)^{\circ}$
$V=1671.2$ (6) \AA^{3}
$Z=4$

$$
D_{x}=1.198 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1698 reflections
$\theta=2.8-22.2^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.28 \times 0.16 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8391 measured reflections
2938 independent reflections
1619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 17$
$k=-5 \rightarrow 7$
$l=-22 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.207$
$S=1.02$
2938 reflections
208 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C9	1.311 (4)	N1-C5	1.487 (4)
O2-C4	1.262 (4)	C1-C2	1.514 (5)
O3-C2	1.221 (4)	C2-C3	1.438 (5)
N1-C4	1.335 (4)	C3-C9	1.388 (5)
N1-C1	1.452 (4)	C3-C4	1.458 (5)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	110.2 (3)	O2-C4-C3	123.7 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	126.0 (3)	N1-C4-C3	111.5 (3)
C1-N1-C5	123.8 (3)	N1-C5-C8	109.3 (3)
N1-C1-C2	105.1 (3)	N1-C5-C7	109.7 (3)
O3-C2-C3	131.6 (3)	C8-C5-C7	108.9 (3)
O3-C2-C1	121.6 (3)	N1-C5-C6	108.2 (3)
C3-C2-C1	106.8 (3)	C8-C5-C6	109.9 (3)
C9-C3-C2	134.3 (3)	C7-C5-C6	110.9 (3)
C9-C3-C4	119.2 (3)	O1-C9-C3	117.8 (3)
C2-C3-C4	106.3 (3)	O1-C9-C10	113.6 (3)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1$	124.9 (3)	C3-C9-C10	128.5 (3)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	178.5 (3)	C2-C3-C9-C10	-10.2 (7)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-174.4 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 9-\mathrm{C} 10$	176.6 (3)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	173.0 (4)	O1-C9-C10-C11	158.2 (4)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	178.7 (3)	C3-C9-C10-C11	-20.6 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9-\mathrm{O} 1$	171.0 (4)	O1-C9-C10-C15	-18.4 (5)
C4-C3-C9-O1	-2.2 (5)	C3-C9-C10-C15	162.7 (4)

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	$0.83(3)$	$1.71(3)$	$2.468(4)$	$152(5)$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 3$	0.93	2.25	$2.958(5)$	132
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	0.96	2.47	$3.048(5)$	118

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and were included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The author thanks Dr Y.-Q. Zhu (Nankai University, Tianjin 300071, People's Republic of China) for providing the title compound.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bann, J. L. van der, Barnick, J. W. F. K. \& Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.
Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ellis, D. D. \& Spek, A. L. (2001). Acta Cryst. C57, 433-434.
Holzapfel, C. W., Hutchison, R. D. \& Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.
Matsuo, K., Kitaguchi, I., Takata, Y. \& Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.

organic papers

Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. \& Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039

Rinehart, K. L., Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J. \& Branfman, A. R. (1971). J. Am. Chem. Soc. 93, 4943-4945.
Rooyen, P. H. van (1992). Acta Cryst. C48, 551-552.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stickings, C. E. (1959). Biochem. J. 72, 332-334.

Wu, C.-S., Huang, J.-L., Sun, Y.-S. \& Yang, D.-Y. (2002). J. Med. Chem. 45, 2222-2228
Zhu, Y.-Q., Hu, F.-Z. \& Yang, H.-Z. (2004). Huaxue Tongbao, 67, w018/1w018/7. (In Chinese.)
Zhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Gao,Y., Hu, F.-Z., Zou, X.-M. \& Yang, H.-Z. (2004). Acta Cryst. E60, o196-o198.
Zhu, Y.-Q., Song, H.-B., Yao,C.-S., Gao,Y., Hu, F.-Z., Zou, X.-M. \& Yang, H.-Z. (2004). Acta Cryst. E60, o599-o601.

[^0]: (C) 2005 International Union of Crystallography

