organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Zhen Xu

College of Chemistry and Life Science, Tianjin Normal University, Weijin Road No. 241, Tianjin, People's Republic of China

Correspondence e-mail: youquan_zhu@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.061 wR factor = 0.207 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-*tert*-Butyl-3-(*α*-hydroxy-4-isopropylbenzyl-idene)pyrrolidine-2,4-dione

The title compound, $C_{18}H_{23}NO_3$, is a potent new herbicide containing the pyrrolidine-2,4-dione ring system. In the crystalline state, the molecular skeleton contains a hydrogen-bonded enol group, formed by benzoyl tautomerization.

Received 23 December 2004 Accepted 6 January 2005 Online 15 January 2005

Comment

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity, such as tenuazonic (Stickings, 1959), streptolydigin (Rinehart *et al.*, 1963), tirandamycin (Rinehart *et al.*, 1971), malonomycin (Bann *et al.*, 1978), α -cyclopiazonic acid (Stickings, 1959; van Rooyen, 1992) and β -cyclopiazonic acid (Holzapfel *et al.*, 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and the hydrogen chemical shift of the enol hydroxy group is about 11 p.p.m. (Wu *et al.*, 2002). More importantly, most of the excellent inhibitors of *p*-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu *et al.*, 2004). In this paper, we report the crystal structure of the title compound, (1*b*).

The molecular structure of (1b) is shown in Fig. 1. The analysis of crystals grown from a solution of 3-(4-isopropylbenzoyl)-1-*tert*-butylpyrrolidine-2,4-dione, (1a), showed that we had obtained crystals of the related tautomeric form, *viz*. 1-*tert*-butyl-3-(ahydroxybenzylidene)pyrrolidine-2,4-dione, 1(1b). Atom H1, involved in intramolecular hydrogen bonding between O1 and O2, was assigned to O1 rather than to O2, based on bond lengths. The C4-O2 distance is

A view of the title compound, with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Xu, Zhang, Zhao and Yu • C₁₈H₂₃NO₃

0292

A partial packing diagram of the title compound

1.262 (4) Å. The bond between atoms C2 and O3 is a double bond (C2=O3) of 1.221 (4) Å. In contrast, the C9-O1 distance [1.311 (4) Å] is intermediate between the normal carbonyl C=O bond and the C-O single-bond length (Allen et al., 1987). A similar situation has been reported for the related compounds 3-(1-hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis & Spek, 2001), 1-benzyl-3-(α -hydroxybenzylidene)pyrrolidine-2,4-dione (Zhu, Song, Li et al., 2004) and 3-(α -hydroxy-2-methoxylbenzylidene)-1-isopropylpyrrolidine-2,4-dione (Zhu, Song, Yao et al., 2004), which contain the same pyrrolidine skeleton. In addition, the X-ray data indicate no hydrogen-bonding interaction between adjacent molecules (Fig. 2), while the compounds mentioned above involve weak intermolecular C-H···O hydrogen bonds.

Experimental

The title compound, (1b), was prepared according to the reported method (Matsuo et al., 1980) and was crystallized from a mixture of petroleum ether and ethyl acetate (v/v 3:1).

Crystal data

C ₁₈ H ₂₃ NO ₃	$D_x = 1.198 \text{ Mg m}^{-3}$
$M_r = 301.37$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 1698
a = 14.896 (3) Å	reflections
b = 5.9680 (11) Å	$\theta = 2.8-22.2^{\circ}$
c = 18.894 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 95.752 \ (4)^{\circ}$	T = 293 (2) K
V = 1671.2 (6) Å ³	Prism, colorless
Z = 4	$0.28 \times 0.16 \times 0.16 \; \mathrm{mm}$
Data collection	
Bruker SMART CCD area-detector	1619 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.045$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}$

 $h = -17 \rightarrow 17$

 $k = -5 \rightarrow 7$

 $l = -22 \rightarrow 19$

_3

 φ and ω scans Absorption correction: none 8391 measured reflections 2938 independent reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0941P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.061$ + 0.9716P] $wR(F^2) = 0.207$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.004$ S = 1.022938 reflections $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ 208 parameters Extinction correction: SHELXL97 H atoms treated by a mixture of independent and constrained Extinction coefficient: 0.017 (3) refinement

Table 1	
0.1.4.1	

Selected	geometric	parameters	(A,	°)	

01-C9	1.311 (4)	N1-C5	1.487 (4)
O2-C4	1.262 (4)	C1-C2	1.514 (5)
O3-C2	1.221 (4)	C2-C3	1.438 (5)
N1-C4	1.335 (4)	C3-C9	1.388 (5)
N1-C1	1.452 (4)	C3-C4	1.458 (5)
C4-N1-C1	110.2 (3)	O2-C4-C3	123.7 (3)
C4-N1-C5	126.0 (3)	N1-C4-C3	111.5 (3)
C1-N1-C5	123.8 (3)	N1-C5-C8	109.3 (3)
N1-C1-C2	105.1 (3)	N1-C5-C7	109.7 (3)
O3-C2-C3	131.6 (3)	C8-C5-C7	108.9 (3)
O3-C2-C1	121.6 (3)	N1-C5-C6	108.2 (3)
C3-C2-C1	106.8 (3)	C8-C5-C6	109.9 (3)
C9-C3-C2	134.3 (3)	C7-C5-C6	110.9 (3)
C9-C3-C4	119.2 (3)	O1-C9-C3	117.8 (3)
C2-C3-C4	106.3 (3)	O1-C9-C10	113.6 (3)
O2-C4-N1	124.9 (3)	C3-C9-C10	128.5 (3)
C5-N1-C1-C2	178.5 (3)	C2-C3-C9-C10	-10.2 (7)
N1-C1-C2-O3	-174.4(4)	C4-C3-C9-C10	176.6 (3)
O3-C2-C3-C4	173.0 (4)	O1-C9-C10-C11	158.2 (4)
C5-N1-C4-C3	178.7 (3)	C3-C9-C10-C11	-20.6(6)
C2-C3-C9-O1	171.0 (4)	O1-C9-C10-C15	-18.4(5)
C4-C3-C9-O1	-2.2 (5)	C3-C9-C10-C15	162.7 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1…O2	0.83 (3)	1.71 (3)	2.468 (4)	152 (5)
C11−H11…O3	0.93	2.25	2.958 (5)	132
C7−H7A…O2	0.96	2.47	3.048 (5)	118

All H atoms were placed in calculated positions, with C-H = 0.93-0.97 Å and O-H = 0.82 Å, and were included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O).$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The author thanks Dr Y.-Q. Zhu (Nankai University, Tianjin 300071, People's Republic of China) for providing the title compound.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bann, J. L. van der, Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.
- Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433-434.
- Holzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246
- Matsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.

- Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038–4039.
- Rinehart, K. L., Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J. & Branfman, A. R. (1971). J. Am. Chem. Soc. 93, 4943–4945.
- Rooyen, P. H. van (1992). Acta Cryst. C48, 551-552.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stickings, C. E. (1959). Biochem. J. 72, 332-334.

- Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222–2228.
- Zhu, Y.-Q., Hu, F.-Z. & Yang, H.-Z. (2004). *Huaxue Tongbao*, **67**, w018/1–w018/7. (In Chinese.)
- Zhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Gao,Y., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, 0196–0198.
- Zhu, Y.-Q., Song, H.-B., Yao, C.-S., Gao, Y., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, 0599–0601.